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Abstract
Extensible programming languages such as SugarJ or Racket en-
able programmers to introduce customary language features as ex-
tensions of the base language. Traditionally, systems that support
language extensions are either (i) agnostic to the base language or
(ii) only support a single base language. In this paper, we present
a framework for language extensibility that turns a non-extensible
language into an extensible language featuring library-based exten-
sible syntax, extensible static analyses, and extensible editor sup-
port. To make a language extensible, our framework only requires
knowledge of the base language’s grammar, the syntax for import
statements (which activate extensions), and how to compile base-
language programs. We have evaluated the generality of our frame-
work by instantiating it for Java, Haskell, Prolog, JavaScript, and
System Fω , and by studying existing module-system features and
their support in our framework.

Categories and Subject Descriptors D.2.11 [Software Architec-
tures]: Languages; D.3.2 [Language Classifications]: Extensible
languages; D.3.3 [Language Constructs and Features]: Frame-
works

Keywords Macros; syntactic extensibility; compiler framework;
module system; SugarJ

1. Introduction
Extensible programming languages enable programmers to intro-
duce customary language features as language extensions of the
base language. This serves two main purposes. First, a program-
mer can define language extensions for language constructs that
are missing in the base language, such as tuples and first-class
functions in Java. Second, extensible programming languages serve
as an excellent base for language embedding, because the syntax,
static analysis, and sometimes even the editor support of the embed-
ded language can be realized as a language extension of the base
language. This way, extensible languages combine the simplicity,
composability, and base-language integration of internal DSLs with
the flexibility of external DSLs [7]. To be unambiguous, when re-
ferring to extensible languages in this paper, we mean program-
ming languages that at least provide some form of syntactic ab-
straction. Examples of extensible languages include Racket [14],
SugarJ [10], and OCaml with camlp4 [4].
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We started with the original SugarJ system, which consist of a compiler and an editor.
We have refactored the implementation of the SugarJ compiler to extract an abstract representation of 
the base language. Most importantly, the abstract base language component declares an interface 
ILanguageLib that can be implemented for concrete base languages. Implementations of this interface 
must provide a grammar for the base language and explain how the module system of the base 
language operates.
We can instantiate this interface for Java to obtain SugarJ. But we can also instantiate the interface for 
other base languages such as Haskell. What we have done is to _generalize_ the SugarJ 
implementation into a framework for language extensibility.

Figure 1. Architecture of the extensibility framework Sugar∗.

In existing extensible languages, different techniques for syn-
tactic abstraction have been applied. Most prominently, syntactic
macros are compile-time functions that take syntactic objects as ar-
guments and produce another syntactic object as output. Syntactic
macros exist for many language, such as Scheme [5], Racket [15],
C [31], Java [1, 26], Scala [2], Nemerle [24], or Haskell [23]. While
the corresponding macro engines share many design decisions and
implementation techniques, each system has its own implemen-
tation fully independent of the others. An alternative to syntactic
macros are lexical macros, which take token sequences as input and
produce another token sequence. Since lexical macros can be run
before parsing takes place, the execution of lexical macros is ag-
nostic to the base language. For example, the lexical macros of the
C preprocesor (CPP) do, in fact, not depend on the C programming
language and have been applied in many base languages including
C++, Java, and Haskell. However, lexical macros are an unsatisfy-
ing mechanism for language extensibility since they cannot provide
standard guarantees on the syntactic correctness of programs [9].

As an alternative to syntactic and lexical macros, in our prior
work we proposed grammar-based language extensibility in the
SugarJ programming language [10]. Instead of compile-time func-
tions with explicit invocation syntax, SugarJ extensions extend the
grammar of the base language with new productions that lead
to extension-specific nodes in the abstract syntax tree (AST). In
addition, a SugarJ language extension defines program transfor-
mations that transform the extension-specific parts of the AST
into a base-language AST (the transformations may change base-
language ASTs as well). Optionally, a SugarJ extension can define
static analyses and editor services that SugarJ automatically exe-
cutes. However, like existing syntactic macro systems, our imple-
mentation of SugarJ was specific to Java as a base language.

In this paper, we present Sugar∗, a generalization of the SugarJ
compiler as a framework for language extensibility that supports
many different base languages with relatively little additional ef-
fort. To the best of our knowledge, Sugar∗ is the first reusable
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implementation for extensible languages and syntactic abstraction.
The basic architecture of our framework is illustrated in Figure 1.
The core innovation is the abstract component base language that
abstracts from concrete base languages. Essentially, the abstract
base-language component abstracts from the following aspects of
the base language: the grammar and pretty printer, the syntax for
import statements (which activate extensions), and how to compile
programs that result from an extension’s program transformations.
Since only these aspects have to be provided to the framework, the
implementation effort to support a new base language is low. All
extension-specific tasks are handled by the framework. We refac-
tored the original SugarJ compiler such that it only depends on the
abstract base-language component, but not on any specific base lan-
guage such as Java or Haskell.

One important design decision that enabled the generalization
of SugarJ into Sugar∗ was to use metalanguages independent of
the base language. Specifically, we use SDF2 [29] for the declara-
tion of syntax, Stratego [30] for the declaration of static analyses
and program transformations, and Spoofax [19] for the declaration
of editor services. We reuse these metalanguages for all base lan-
guages.

We have realized our framework for language extensibility in
Java. The abstract base-language component is encoded as an ab-
stract Java class whose abstract methods must be implemented for
each concrete base language. To evaluate the generality of our
framework, we have developed extensible languages based on Java,
Haskell, Prolog, JavaScript, and System Fω by instantiating the
framework. We furthermore conducted a study of module-system
features to identify the limits of our framework. In summary, we
make the following contributions:

• We present the design of an abstract base-language component
that can represent many different base languages, yet is detailed
enough to realize syntactic extensibility on top of it.

• We present the design and implementation of a framework for
language extensibility that provides extensibility support for
syntax, static analyses, and editor support for a wide range of
base languages.

• We instantiate the framework to realize extensible variants of
Java, Haskell, Prolog, JavaScript, and System Fω .

• We present a study of existing module-system features and
discuss to which extent our framework supports these features.

2. Source-code processing with Sugar∗

The Sugar∗ infrastructure distinguishes five separate phases: pars-
ing, analysis, desugaring, generation, and editing. Figure 2 shows
how these phases are connected in a pipeline to form a compiler and
development environment. Sugar∗ applies this pipeline to a source
file incrementally one toplevel declaration at a time, so that im-
port statements (which activate language extensions) can affect the
parser, etc. for the rest of the file. User extensions can customize
all phases except for the final code-generation phase. In this sec-
tion, we briefly describe the different phases and their respective
responsibilities, and how users can apply customizations. This sec-
tion is important to understand the interaction between the Sugar∗

processing and the base-language definition.

Parsing. The parser translates a textual source file into a struc-
tured syntax tree. We employ SDF2 and its scannerless GLR
parser [29], which we have extended with support for layout-
sensitive syntax [11] to enable base languages such as Haskell [12].
A user can customize parsing by leveraging SDF’s support for
grammar composition. In particular, it is possible to provide ad-
ditional productions for a nonterminal of the base language. For

example, the following SDF fragment extends the nonterminal
JavaExpr from the base language Java:

context-free syntax
XMLDoc -> JavaExpr {"XMLExpr"}
XMLElem -> XMLDoc
"<" Id Attr* "/>" -> XMLElem {"XMLEmptyElem"}

Sugar∗ composes user extensions with grammar of the base lan-
guage and other extensions to obtain a parser for the composed
language. This way it is possible to deeply intertwine syntax from
different extensions in a single program. Accordingly, the Sugar∗

parser results in a syntax tree that contains nodes from the Sugar∗

base language and nodes specific to different extensions, such as
XMLEmptyElem.

Technically, it is important that Sugar∗ performs incremental
parsing: It parses a source file one toplevel declaration at a time.
This is important because we want to change the current parser
when encountering an import statement that refers to a language
extension. When encountering such an import statement, we com-
pose the imported grammar with the current grammar, regenerate
a parser for the composed grammar (we use caching for perfor-
mance), and continue with this parser.

Analysis. After parsing, Sugar∗ applies any static analyses that
are defined as part of the base language. For example, for Java, we
would define type checking as part of the base language. A Sugar∗

analysis receives the parsed syntax tree as input and is not allowed
to change the structure of the parsed syntax tree; it may only add
metadata to the syntax tree as annotations (illustrated by * in Fig-
ure 2). For example, the Java type checker would annotate types to
expressions and variables in the syntax tree, but would not rewrite
class references to fully qualified names. Such transformations can
be realized in the next phase.

We use the strategic rewriting language Stratego [30] for im-
plementing Sugar∗ analyses on top of syntax trees. Importantly,
Stratego supports the composition of equally named rewrite rules
that define alternative rewritings for some input. This allows Sugar∗

users to extend the analyses of the base language or to define ad-
ditional ones specific to their language extension. Sugar∗ forwards
the annotated syntax tree to the desugaring.

Desugaring. A desugaring implements the actual semantics of a
user-defined language extension by translating programs of the ex-
tended syntax into programs of the base language. Like analyses,
Sugar∗ desugarings are implemented in Stratego. The composition
support of Stratego is essential for desugarings, because it allows
Sugar∗ to compose desugarings of different extensions into a sin-
gle one. Sugar∗ applies this composed desugaring bottom-up to the
syntax tree until a fixed point is reached (rewriting strategy inner-
most). This way, Sugar∗ combines the semantics of different lan-
guage extensions to form a single semantics for the composed ex-
tension.

Desugaring transformations can use the analysis information
acquired in the previous phase (type-driven translation) and are
free to translate any part of the syntax tree. This is unlike and more
expressive than macros of most macro systems, which perform top-
down expansion starting at the macro application. In particular,
a Sugar∗ desugaring can also transform base-language programs,
for example, to implement a custom optimization or to inject code
for runtime monitoring (logging). However, whatever desugarings
do, when a fixed point is reached, the resulting program may only
consist of syntax-tree nodes of the Sugar∗ base language so that the
subsequent generation phase can focus on the base language alone.

Generation. A Sugar∗ base-language syntax tree may describe
a regular base-language program and/or a language extension. The
generation phase receives such a tree and generates various artifacts
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Figure 2. The SugarJ infrastructure: The result of processing is used to configure the parser, analysis, transformation, and editor.

depending on the nature of the syntax tree: If the syntax tree rep-
resents a base-language program, Sugar∗ calls the base-language
compiler (if existent) to generate base-language binaries. For ex-
ample, for Java, we call javac and write the corresponding .class
files. For interpreted languages such as Prolog, we simply store the
pretty-printed syntax tree for later execution. If the syntax tree rep-
resents a language extension, Sugar∗ generates separate artifacts
for the different kind of extensions. If the extension defines an ex-
tended grammar, we generate a corresponding SDF module; if the
extension defines an analysis, we generate a corresponding Stratego
module; and so on. Since, at the time of writing, SDF and Strat-
ego do not support separate compilation, we only generate pretty-
printed artifacts and only call the respective compilers when we
require the updated parser, analysis, or desugaring.

The generation phase is the only phase of Sugar∗ that is not
customizable: The semantics of the base language is fixed once and
for all in the definition of the base language (see next section), and
the semantics of extensions is defined in terms of the base language.
Thus, a customization of the generation phase is not required.

Editing. Language extensions break existing tools such as IDEs,
which typically only support the unchanged base language. Sugar∗

builds on Spoofax [19] to automatically derive a simple Eclipse-
based editor for the base language [8]. This editor can be further
adapted to realize syntactic services (for example, syntax coloring,
outline view, template-based code completion) and semantic ser-
vices (for example, hover help or reference resolution) for the base
language. Sugar∗ users can extend the editor support of the base
language to accommodate, for example, extension-specific syntax
coloring, hover help, or reference resolution. Sugar∗ editor services
operate on the annotated syntax tree resulting from the analysis
phase. Therefore, many editor services really are only concerned
with the presentation of annotated information, such as showing
type information in hover help or providing jump-to-definition sup-
port for resolved names.

Extension activation. Sugar∗ lifts a base language into an exten-
sible language: Extensions of the lifted language can be defined
within the lifted language itself as part of regular modules. For ac-
tivating language extensions, Sugar∗ promotes the use of regular
import statements. If an import statement refers to a module that

declares a language extension, Sugar∗ adapts the current parser,
analysis, desugaring, and editor by reconfiguring them. However,
since imports are scoped, extensions are never activated globally
but at most on a file-by-file basis.

The processing of the Sugar∗ framework is not independent of
the base language. In the following section, we describe how the
Sugar∗ processing interacts with the base language via an abstract
representation.

3. An abstract representation of base languages
To support syntactic extensibility for a large number of program-
ming languages, we define an abstract representation of program-
ming languages. Our abstract representation captures the features
needed for language extensibility, yet is generic enough to permit
the instantiation with many different base languages. We split our
abstraction into two parts: a base language and a base-language
processor. The former is stateless and provides methods that re-
veal details about the base language in general, whereas the latter
is stateful and provides methods for processing a single source file.
We display our abstract representation for base languages and base-
language processors in Figure 3.

3.1 Base language
The abstract base-language representation IBaseLanguage provides
information per language and is independent of the processing of
concrete source files. However, the base language gives rise to
fresh base-language processors via the method createNewProcessor.
The Sugar∗ compiler calls this method once for each source file it
compiles.

File extensions. Sugar∗ distinguishes three kinds of files required
respective file extensions from a base-language definition: Files
that contain possibly extended base-language code and extension
declarations (getSugarFileExtension), files that contain desugared,
plain base-language code (getBaseFileExtension), and compiled
base-language source files (getBinaryFileExtension). For the last
one, a base language may return null to indicate that the language
is interpreted and no compiled files exists. As example, our Java
implementation returns "sugj", "java", and "class" as file exten-
sions, respectively.
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public interface IBaseLanguage {
public IBaseProcessor createNewProcessor();
public String getLanguageName();

public String getSugarFileExtension();
public String getBaseFileExtension();
public String getBinaryFileExtension();

public Path getInitGrammar();
public String getInitGrammarModuleName();
public List<Path> getPackagedGrammars();
public Path getInitTrans();
public String getInitTransModuleName();
public Path getInitEditor();
public String getInitEditorModuleName();

public boolean isImportDecl(IStrategoTerm decl);
public boolean isExtensionDecl(IStrategoTerm decl);
public boolean isBaseDecl(IStrategoTerm decl);

}

public interface IBaseProcessor {
public IBaseLanguage getLanguage();
public void init(RelativePath sourceFile, Environment env);

public void processModuleImport(IStrategoTerm toplevelDecl);
public List<String> processBaseDecl(IStrategoTerm decl);

public String getNamespace();
public String getModulePathOfImport(IStrategoTerm decl);
public boolean isModuleExternallyResolvable(String module);

public String getExtensionName(IStrategoTerm decl);
public IStrategoTerm getExtensionBody(IStrategoTerm decl);

public Path getGeneratedSourceFile();
public String getGeneratedSource();
public List<Path> compile(List<Path> generatedSourceFiles,

Path targetDir,
List<Path> classpath);

}

Figure 3. Abstract representations for base languages (stateless) and their processors (stateful: one processor per source file).

Initialization. We make few assumptions about the structure of
a language’s programs and no assumptions about their syntax or
tooling. Instead, a base language provides its own grammar, initial
transformation (desugaring and analysis), and editor declaration.
These provide the initial configurations for all customizable phases
in Section 2: parsing, analysis, desugaring, and editing.

The initial grammar (getInitGrammar) must point to an SDF2
module, which typically requires other, pre-packaged SDF2 mod-
ules (getPackagedGrammars). In particular, the base-language gram-
mar must define nonterminal ToplevelDeclaration, which Sugar∗

uses as the start symbol to parse the next toplevel declaration as ex-
plained in Section 2. The initial grammar must include productions
for the declaration of syntactic extensions. To this end, the Sugar∗

standard library provides a pre-defined nonterminal ExtensionElem
that can be integrated into the initial grammar. For example, the
SugarJ grammar contains the following production in addition to
standard Java:

JavaMod* "extension" JavaId "{" ExtensionElem* "}"
-> ToplevelDeclaration

The initial transformation (getInitTrans) must point to a Stratego
module. Sugar∗ uses Stratego for analyses and desugarings, both
of which can get initially defined here by implementing Stratego
strategies start-analysis and desugar, respectively. In contrast to
SDF2, Stratego modules do not occur pre-packaged, so that this
additional method is only required for grammars.

Finally, the initial editor (getInitEditor) must point to a Spoofax
editor-service module. This way, a base language can specify stan-
dard editor services such as syntax coloring or code completion.
The user of the extensible language later can extend the initial
grammar, transformation, and editor with custom rules.

AST predicates. Sugar∗ distinguishes only three kinds of toplevel
declarations: import statements, extension declarations, and base-
language declarations. These declarations have an abstract syntax
that is specific to the base language. For example, import state-
ments in Java look different from module-use statements in Prolog.
Accordingly, we require the base language to provide predicates
that allow us to distinguish imports, extensions, and base-language
declarations. The AST predicates are used as the first step of the
generation phase described in Section 2.

Importantly, the Sugar∗ compiler fully handles the processing
and activation of extensions as well as the resolution and sub-

compilation of imported modules. For handling language-specific
declarations such as a Java package, a Java class, a Haskell module
header, or a Haskell module body, our compiler uses the base-
language processor.

3.2 Base-language processor
The abstract base-language processor IBaseProcessor provides
methods for source-file handling specific to the base language. A
base-language processor is a stateful component that, in particular,
is used to accumulate desugared source-file fragments during com-
pilation of a sugared file. The Sugar∗ compiler acquires and uses
exactly one base-language processor per source file and initializes
it (init) with the path to the sugared source file and the compiler’s
environment. The environment contains common information such
as the source path or the include path.

Base-language processing. In case the Sugar∗ compiler en-
counters a base-language declaration or an import statement that
refers to another base-language module, the compiler requires the
base-language processor to handle them (processModuleImport and
processBaseDecl). Typically, these methods just pretty-print the ab-
stract declaration term and store it until the source file is completely
processed and the base-language compilation is triggered.

Our design permits a base-language declaration to establish
further module dependencies. For example, a Java class can con-
tain qualified names to that reference external classes or a Scala
declaration can contain nested import statements. For this reason,
processBaseDec yields a (possibly empty) list of additional mod-
ule dependencies. Our compiler ensures that these additional de-
pendencies are satisfied and, if needed, compiles the corresponding
source files first.

Namespace. The Sugar∗ compiler requires base-language sup-
port for correctly treating the base-language’s namespace. Gener-
ally, we assume that modules are organized in a hierarchical name-
space that follows the file/directory structure. However, a base lan-
guage can customize this behavior by providing non-standard im-
plementations of getNamespace and getModulePathOfImport.

The compiler calls getNamespace to retrieve the namespace of
the currently processed source file. In languages with hierarchical
module systems that reflect the file/directory structure like Java or
Haskell, getNamespace returns the directory path of the source file

6



base language

IBaseProcessor

LangRegistry

java

JavaProc

Activator

implement extension point

register on activation

implement interfacecompiler

Driver
call a

bstrac
t methods

request base-language

component for source file

call compiler

editor

Controller

Spoofax

require parse or build
of a source file

on init: register
editors for available
base languages

stdlib
integrates syntax of

extension declaration

link user  
extensions 

BaseLanguage

IBaseLanguage JavaLangimplement interface

Figure 4. Detailed architecture of the extensibility framework Sugar∗: OSGi modules , classes , interfaces , extension points .

relative to the root location of source files. In contrast, a language
with a flat namespace returns the empty string or a constant string.

Conversely, to locate imported modules, the Sugar∗ compiler
queries the base-language processor to retrieve the module path
referred to by an import statement (getModulePathOfImport). De-
pending on the nature of the base-language module system, the
returned path may reflect the hierarchical namespace. Our com-
piler will try to locate binaries, extensions, and source files of
the returned module path. If this fails, the compiler would usu-
ally mark an illegal import statement. However, some languages
like Haskell employ a package manager to resolve imported mod-
ules if no source/binary artifact exists. To allow for such module
resolution, our compiler checks with the base-language processor
if a module is externally resolvable (isModuleExternallyResolvable).
We treat an import of an externally resolvable module just like an
import of a pre-compiled base-language module.

Extensions. Sugar∗ handles all aspects of extensions indepen-
dent of the base language. The only assistance the compiler
needs, is to extract the name (getExtensionName) and the body
(getExtensionBody) of an extension from its abstract-syntax rep-
resentation, which may be base-language specific. For example,
language extensions in Java occur in their own public extension
declaration, whereas SugarHaskell extensions are regular modules
containing grammar, transformation, and editor artifacts.

Generation. After processing all toplevel declarations of a source
file, the Sugar∗ compiler queries the base-language processor for
the generated base-language source code as a string
(getGeneratedSource) and the path of a file into which the generated
source code should be written. Typically, a base-language proces-
sor simply returns a concatenation of the pretty-printed, desugared
toplevel declarations.

Finally, a base-language processor must define a method for
compiling base-language source files (compile). This method re-
ceives a list of base-language source files that should be compiled,
a target directory for the compiler output, and a classpath. The
method receives a list of source files because the Sugar∗ compiler
automatically detects cyclic imports. For each cycle, the compile
method is only called once with all modules of the cycle as ar-
gument. This way, the base-language compiler can treat the cycle
appropriately, for example, by rejecting it.

4. Technical realization of Sugar∗

To realize Sugar∗, we significantly reengineered the original SugarJ
compiler at different levels. First, we introduced the abstract base-
language component from the previous section as a level of indi-
rection to parameterize the compiler over different base languages.
Second, we used OSGi [21] to impose a large-scale module struc-
ture that separates the compiler, the editor, and the different base
languages into separate but interdependent modules. Finally, we
employed Eclipse extension points [17] to realize a central lan-
guage registry that eliminates the dependency from the compiler
to the concrete base languages. The final architecture is shown in
Figure 4, which is a detailed version of the overview shown in Fig-
ure 1.

Parameterizing the compiler. The original SugarJ compiler in-
corporated specific knowledge about Java in various places. For
example, it required a Java grammar to build the initial SugarJ
grammar, it did a case distinction over different kinds of Java AST
nodes, and it called the Java compiler to compile desugared pro-
grams. At all such places, we changed the implementation to call
a corresponding method from the abstract base-language compo-
nent BaseLang instead of using the Java-specific code. Simultane-
ously, we moved the old Java-specific code into a class JavaLang
that instantiates BaseLang. After refactoring, we can use the refac-
tored compiler and the extracted language component JavaLang to
compile SugarJ files by instantiating the compiler with JavaLang:
Driver.compile(new JavaLang(), sourceFile).

Imposing modules. Our framework should permit adding addi-
tional base languages independent of the compiler implementation.
To this end, we decomposed the different artifacts of Sugar∗ into
OSGi modules as follows:

editor: Operates as a bridge between the compiler of Sugar∗ and
the Spoofax Eclipse plugin. In particular, registers the file-name
extensions of available Sugar∗ languages with Spoofax and re-
ceives corresponding parse requests and compilation requests.

compiler: Contains classes that realize the processing explained
in Section 2. In particular, the compiler contains code to build
and execute the user-defined parsers and desugarings. Since the
compiler has no dependency on the editor, it is possible to apply
the Sugar∗ compiler as a batch compiler without a supporting
editor.

stdlib: Contains the grammars of the metalanguages used by
Sugar∗: SDF2, Stratego, and Spoofax editor services. For defin-
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SugarJ
package test;
import foo.Foo;
public sugar Bar {

syntax
A -> B {"Cons"}

}

SugarHaskell
module test.Bar
import foo.Foo

syntax
A -> B {"Cons"}

SugarProlog
:- sugar_module(test/Bar).
:- use_module(foo/Foo).

:- syntax
A -> B {"Cons"} .

SugarJS
module test/Bar
import foo/Foo
sugar {

syntax
A -> B {"Cons"}

}

SugarFomega
module test.Bar
import foo.Foo

syntax
A -> B {"Cons"}

Figure 5. Extension declarations in different instantiations of Sugar∗.

ing an extensible base language, developers mix these metalan-
guages with their base-language grammar. The standard library
furthermore defines some commonly used Stratego operations,
such as functions for performing analysis and annotating the re-
sult in a syntax tree. The compiler links extensions defined by
the user against the standard library.

base language: Contains the abstract base-language component
and the language registry. This module is used by the compiler
and refined by concrete base languages.

concrete base language (java, etc.): Extends the abstract base-
language component and, in particular, defines an initial gram-
mar, an initial desugaring, and initial editor services for the ex-
tensible variant of the base language.

Language registry. OSGi employs a lazy activation policy of
modules to minimize the number of loaded modules: A module
is only loaded when the first class of this module is required [21].
Since the compiler of Sugar∗ should be independent of concrete
base-language implementations, the compiler does not refer to any
class from a base-language module. Thus, no base-language mod-
ule would ever be activated by OSGi.

To circumvent this problem, we define an Eclipse extension
point [17] and use Eclipse’s buddy policy [17] to activate all con-
crete base-language modules whenever the abstract base-language
module is activated. On activation, concrete base-language mod-
ules register themselves with the language registry. The compiler
queries this language registry to receive a base-language compo-
nent. This way, we achieve the decoupling of compiler and base
languages:

1. The compiler can process any source file for which a base-
language module is available.

2. The compiler is defined fully independently of any concrete
base-language module.

5. Evaluation: SugarJ, SugarHaskell,
SugarProlog, SugarJS, SugarFomega

To evaluate the generality of Sugar∗, we instantiated the Sugar∗

framework by developing 5 extensible languages based on Java [10],
Haskell [12], Prolog [22], JavaScript1, and System Fω [20]. De-
spite the significant difference between these languages regarding
their syntax, semantics, and building, Sugar∗ successfully accom-
modates each of them. More yet, the design of Sugar∗ provides
sufficient freedom for base languages to allow the integration of ex-
tensibility in a way that feels native to the language. For example,
in Figure 5 we illustrate extension declarations in all 5 extensible
languages we developed. Notably, for Java, Haskell, and Prolog
we use standard-like module headers and import statements, and
integrate extensibility declarations in a natural way. SugarJS and
SugarFomega were implemented by others to provide extensibility
for JavaScript and System Fω , respectively. Since JavaScript and

1 https://github.com/bobd91/sugarjs/

System Fω do not have a standard module system, the respective
developers designed a module system themselves. For example,
the module system of SugarFomega syntactically resembles the
module system of Haskell.

To realize an extensible variant of a base language, the inter-
faces presented in Section 3 had to be implemented. Specifically,
for each base language, we defined or reused the following arti-
facts:

• A grammar of the pure base language specified with SDF2 [29].
• An SDF2 grammar module that integrates extension declara-

tions (nonterminal ExtensionElem) into the base language and
defines nonterminal ToplevelDeclaration for the base language.
This module can serve as initial grammar.

• A Spoofax module that defines the initial editor services for the
base language.

• An instance of IBaseLanguage.
• An instance of IBaseProcessor.

Except for Java, we did not define any initial transformations.
To illustrate the implementation of an extensible language with

Sugar∗, we present the relevant details of the SugarHaskell imple-
mentation. The SugarHaskell grammar is defined as follows:

module org/sugarj/languages/SugarHaskell
imports org/sugarj/languages/Haskell

org/sugarj/languages/Sugar
exports context-free syntax
ModuleDec -> ToplevelDeclaration
OffsideImportdecl -> ToplevelDeclaration
OffsideTopdeclList -> ToplevelDeclaration {cons("HSBody")}
ExtensionElem+ -> ToplevelDeclaration {cons("ExtBody")}

This grammar defines the ToplevelDeclaration nonterminal by for-
warding existing definitions for Haskell modules, Haskell im-
ports, and Haskell toplevel declarations from the Haskell grammar
org/sugarj/languages/Haskell and extension declarations from the
grammar org/sugarj/languages/Sugar, that comes with the standard
library of Sugar∗. In Figure 6, we sketch the implementation of
IBaseLanguage and IBaseProcessor for SugarHaskell using pseudo
code.

The implementation shows that HaskellLanguage is stateless and
simply functions as a body of knowledge about SugarHaskell. In
contrast, HaskellProcessor stores the namespace and module name
of the currently processed source file and accumulates the desug-
ared source code when processModuleImport or processBaseDecl is
called. For this, HaskellProcessor uses a pretty printer, which we
generated from the Haskell base grammar (not shown). To check
for externally resolvable modules, we call on the GHC packet man-
ager ghc-pkg. Finally, compile runs the standard GHC compiler on
the list of desugared files.

Implementation effort. As the implementation in Figure 6 indi-
cates, the implementation effort for realizing an extensible vari-
ant of base language is modest using our framework. In Table 1,
we summarize the source lines of code (SLOC: excluding empty
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public class HaskellLanguage implements IBaseLanguage {
name = "Haskell"
sugarFileExtension = "shs"
baseFileExtension = "hs"
binaryFileExtension = "o"
initGram = Path("org/sugarj/languages/SugarHaskell.sdf")
initTrans = Path("org/sugarj/languages/SugarHaskell.str")
initEditor = Path("org/sugar/languages/SugarHaskell.serv")
isImportDecl(x) = x.nodeName == "Import"
isExtensionDecl(x) = x.nodeName == "ExtBody"
isBaseDecl(x) = x.nodeName == "ModuleDec"

|| x.nodeName == "HSBody"
}

public class HaskellProcessor implements IBaseProcessor {
var namespace; var moduleName; var source = ""
processModuleImport(t) = source += prettyPrint(t)
processBaseDecl(t) =
source += prettyPrint(t)
if t.nodeName == "ModuleDec"
(namespace, moduleName) = splitName(prettyPrint(t))

return [ ]
modulePathofImport(t) = prettyPrint(t.subterm(1))
isExternallyResolvable(s) = exec "ghc-pkg find-module $s"
extensionName(t) = moduleName
extensionBody(t) = t.subterm(1)
genSourceFile = Path("$BIN/$namespace/$moduleName.hs")
genSource = source
compile(files, target, cp) =

exec "ghc -outputdir $target -i $cp $files"
}

Figure 6. Instantiation of Sugar∗ for SugarHaskell.

lines and comments) that were necessary to realize the different
languages. As the table shows, the implementation effort per lan-
guage is low. For all languages we considered, most effort actually
had to be spent in developing a grammar for the base language.
In particular for syntactically more complex languages like Java,
Haskell, or JavaScript, developing a grammar for the base language
is comparably laborious. The implementation of a new base lan-
guage involves additional artifacts, such as constructor signatures,
a pretty-printer, and static analyses for the base language.

This data suggests that the abstraction we designed for repre-
senting base languages is adequate in the sense that the instan-
tiation is straight-forward and does not require involved coding.
Especially, if one considers the boilerplate imposed by Java even
for implementing simple functions, as opposed to the more concise
pseudo-code implementation of Figure 6. Note that the numbers
shown in Table 1 do not include the definition of a pretty-printer,
which can be generically derived from the base-language gram-
mar [3, 28]. Furthermore, we did not count the effort for developing
static analyses of the base language since running these analyses
inside Sugar∗ is optional and can be left to the base-language com-
piler. However, a reimplementation of base-language analyses in
Stratego is required if they should be extended inside Sugar∗.

In summary, Sugar∗ enables a full-fledged extensible language
with little effort. The extensible language supports extensible syn-
tax, extensible static analyses, extensible desugarings, and an ex-
tensible IDE. Moreover, even without any actual language exten-
sion, a base language realized with Sugar∗ already benefits from
the dependency management of the Sugar∗ compiler and from the
Spoofax-based Eclipse plugin that we provide [8, 19]. To show the
generality of Sugar∗, we successfully instantiated Sugar∗ with 5
base languages that employ diverse module-system features. In the

Base
Grammar

Initial
Grammar

IBase
Language

IBase
Processor

Java 1164 52 113 182
Haskell 923 10 92 168
Prolog 266 26 93 140
JavaScript 542 39 88 149
System Fω 163 39 94 123

Table 1. SLOC for realizing extensible languages with Sugar∗.

Feature Base Extensions

Flat namespace
Hierarchical namespace
Nested modules
First-class modules
External module management

Lexical imports n/a
Qualified names
Selective import/renaming
Module reexport
Nested imports
Cyclic imports
Dynamic module loading

Global compilation
Incremental compilation
Separate compilation
Interpreted n/a

Table 2. Module system features and their support in Sugar∗.

subsequent section, we present a more general study of module-
system features and their support in Sugar∗.

6. A study of module-system features
We developed a framework for adding syntactic extensibility to ex-
isting programming languages. In our design of Sugar∗, our main
goal was generality: We want to support as many base languages as
possible. Since Sugar∗ is largely module-driven (modules encapsu-
late extensions and extensions are activated through import state-
ments), a deciding factor in the generality of Sugar∗ is whether it is
possible to encode the module system of the base language as im-
plementations of the interfaces IBaseLanguage and IBaseProcessor
shown in Section 3. To better understand the generality of Sugar∗,
we investigate a subset of the module-system features of main-
stream programming languages and discuss their support in Sugar∗.

Table 2 gives an overview of the module-system features we
studied. We distinguish whether Sugar∗ supports a module-system
feature for base-language modules and whether it supports a feature
for modules containing extension declarations. In the following,
we describe the studied module-system features, name example
languages that support the features, and discuss their support in
Sugar∗ in detail.

Namespace (Flat: Prolog; Hierarchical: Haskell, Java): A mod-
ule system’s namespace can be either flat or hierarchical. In a
flat namespace, modules only have a name that identifies them.
In a hierarchical namespace, modules are organized in a hierar-
chical structure and are identified by their name and their path
through this hierarchy. Sugar∗ was originally designed to support
a base language with hierarchical namespaces (Java) for both lan-
guage and extension modules. In our generalization, we retained
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this feature through method getModulePathOfImport of interface
IBaseProcessor. This method takes the syntax tree of an import
statement and returns a relative path to the referenced module. A
flat namespace can be modeled as hierarchical namespaces with an
empty path prefix.

Nested modules (Java, Scala): Nested modules are submodules
of a module which are defined in a module’s body itself. Sugar∗

supports nested base-language modules as they do not expose any
dependency to additional source files and can be fully handled by
processBaseDecl. Since a nested module may be compiled to a sep-
arate binary (as is the case in Java and Scala), method compile re-
turns a list of all generated files, which enables Sugar∗ to keep track
of them and initiate a recompilation when necessary. However, we
do not support extension declarations as nested modules, since we
have no means of extracting the extension declaration from the
outer module. Thus, extensions can only be declared as toplevel
declarations.

First-class modules (Python, ML, Newspeak): First-class mod-
ules are modules that can be created dynamically, manipulated,
and passed around as first-class values of the language. Similar
to nested modules, we support first-class base-language modules,
since they can be fully handled by processBaseDecl. Extensions
cannot be declared in first-class modules since we cannot extract
the extension declaration and we require extension declarations
statically for parsing source code that uses the extension.

External module management (Haskell): External module man-
agement is a feature that some programming languages support
to load pre-installed modules from external locations. An external
location in this sense is any location outside the sourcepath and
classpath used for compilation. For example, the Glasgow Haskell
Compiler (ghc) looks up pre-installed modules in a package man-
ager. We support external module management for base modules
through method isModuleExternallyResolvable. However, externally
resolved modules cannot define extension declarations, as we need
to actually load and process extension declarations but we have no
way of requesting the extension declaration from the external loca-
tion.

Lexical imports (C, C++, Ruby): A lexical import inserts the
source code of the imported module literally into the source file
where the import occurs. The method processModuleImport in our
interface is concerned with handling module imports. Implemen-
tations of a base language can choose to implement lexical import
behavior for the base language, since we do not require that an
import statement itself occurs in the final generated source code
provided by getGeneratedSource. Lexical imports are not applica-
ble for extensions, since an import of an extension declaration has
a fixed semantics in Sugar∗, namely to activate the extension in the
scope of the importing module.

Qualified names (Java, Scala): Qualified names allow using
members of a module without explicitly importing the contain-
ing module. For example, in Java this is accomplished by pro-
viding the hierarchical path to the module and the name of the
member. Sugar∗ supports qualified names for base modules even
though this entails dependencies to additional source files. To this
end, method processBaseDecl returns a list of paths to additional
module dependencies that occurred in the base declaration. For
Java, processBaseDecl returns a list of all modules accessed through
qualified names in the base declaration. We do not support qual-
ified names for extension modules, as dependencies to extension
declarations have to be explicit via import statements.

Selective import/renaming (Haskell, Prolog, Scala): A selective
import allows to select which members are imported from a mod-
ule. Renaming allows such members to be locally renamed. We

support selective imports and renaming for base language modules,
because we are only interested in the module dependency and al-
low method getModulePathOfImport to extract the path to the mod-
ule from arbitrarily complex import statements. The selection and
renaming of module members can be either realized by method
processBaseDecl or simply forwarded to the base-language com-
piler. We do not support import selection/renaming for extension
modules. Importing an extension will always bring the full exten-
sion into scope. We plan to investigate more fine-grained extension
activation in our future work.

Module reexport (Haskell, Prolog): A reexport statement allows
to export module members that have been imported from other
modules. This way a module can collect and package functionality
from multiple modules into a single module. We support module re-
exports for base-language modules, which can be handled as a stan-
dard base-language declaration by method processBaseDecl. We do
not support customizable reexport of extension modules. Instead,
an extension is never reexported by a base-language module, and
an extension is always reexported by an extension module. Tech-
nically, the latter is due to transitive imports in the metalanguages
SDF, Stratego, and Spoofax editor specifications, which underlie
Sugar∗.

Nested imports (Scala): A nested import is an import that occurs
nested inside a code block. Specifically, a nested import is not a
toplevel declaration. While Sugar∗ has special support for handling
toplevel import statements, we also support nested imports for
base-language modules. In principle, these nested imports can be
handled by method processBaseDecl. However, since we want to
keep track of module dependencies, we require processBaseDecl to
provide a list of additional module dependencies, so that Sugar∗

can ensure these dependencies are resolvable and can initiate the
compilation of the required modules. We do not support nested
imports for extensions, when method processBaseDecl is called, the
base declaration has already been parsed, analyzed, and desugared.
Hence, it is too late for activating any language extension.

Cyclic imports (Java): Cyclic imports occur when two or more
modules require features from each other so that a cyclic depen-
dency graph is imposed. Cyclic imports are relevant for the Sugar∗

compiler because they essentially prevent incremental or sepa-
rate compilation: In order to compile modules with cyclic de-
pendencies, all involved modules have to be processed simulta-
neously. Sugar∗ supports cyclic dependencies of base-language
modules by detecting cyclic dependencies and forwarding mini-
mal strongly connected components to the method compile of in-
terface IBaseProcessor. We do not support cyclic dependencies for
language extensions, because the compilation of these extensions
would depend on themselves, which is a circular definition.

Dynamic module loading (Python, Java): Languages that support
dynamic module loading provide facilities for loading a module at
runtime of a program. Accordingly, these module dependencies are
not resolved statically at Sugar∗ compile time, but when the com-
piled program is executed. For example, Python resolves imports at
runtime, which can be used to realize conditional import depending
on some runtime computation. In Java, a class loader enables the
dynamic loading of pre-compiled modules at runtime. We support
base languages that feature dynamic loading of modules, because
they do not influence compilation and no dependency tracking is
necessary: The binary of a module does not change when a dynam-
ically loaded module changes. We do not support dynamic loading
of extension modules, as an extension influences the static parts of
language processing: parsing, static analysis, desugaring, and edi-
tor support.
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Global compilation (Stratego): Global compilation simultane-
ously processes all modules of a program. For example, Stratego
collects all source modules and weaves them into a single module
before continuing code generation. Sugar∗ partially supports global
compilation of base-language source modules, because we do not
enforce the compilation of single modules. However, Sugar∗ lacks
a mechanism for adding a global-compilation phase after all mod-
ules have been processed. We will investigate better support for
global compilation as described below for separate compilation.
For language extensions, we do not support global compilation,
since extensions have to be compiled before they can be used.

Incremental compilation (Java, Haskell): Incremental compila-
tion first processes all imported modules before processing the a
module itself. Sugar∗ supports incremental compilation for both
base-language modules and extensions. In particular, Sugar∗ keeps
track of module dependencies to initiate recompilation whenever a
required module changes.

Separate compilation (C): Separate compilation processes source
modules independently from each other by only relying on the in-
terfaces of required modules. For example, a C source file typically
does not import any other C source files but only header files from
other modules. The C compiler compiles each source module inde-
pendently and links the resulting binaries. Sugar∗ partially supports
separate compilation, because method compile is free to compile
modules that do not require other source modules. However, like
for global compilation, Sugar∗ currently lacks a post-processing
phase that could be used to collect all compiled modules and call
the linker. In a sense, such global linking contradicts the modu-
lar extension-activation nature that Sugar∗ promotes. However, it
would be possible to include some sort of linker module in a base
language with the mere purpose of connecting otherwise unrelated
modules. The method compile could implement a special handling
for linker modules that initiates global compilation or linking for
all required modules. This way we would circumvent the global
nature of global compilation and would not require a closed world
assumption. We will investigate this as part of our future work. For
language extensions, we do not support separate compilation, since
this would require an interface for the extensions against which
clients of the extension can be compiled. Our extensions do not
possess an interface useful for that purpose.

Interpreted (Ruby, Prolog): In interpreted languages, a module
is not compiled but stored as source code for later execution. We
support this feature by declaring method getBinaryFileExtension
from interface IBaseLanguage as being optional and by allowing
method compile to simply do nothing.

Summary. As our study of module-system features shows, Sugar∗

is able to support a large range of module-system features. This
means that many base languages can be made extensible by in-
stantiating Sugar∗. However, for extension modules we are cur-
rently much more restrictive. To emphasize this difference, for
some instantiations of Sugar∗ it would make sense to distinguish
statements for base-language import from statements for extension
import syntactically, for example using different keywords. In our
future work, we want to investigate support base languages that use
global or separate compilation as well as more flexible usage of
extension modules.

7. Related work
Existing systems for syntactic abstraction typically fall into one
of two categories: Either a system only supports a single base
language, or it supports multiple base languages but is agnostic to
the base language.

A prominent example of the first category are Scheme macros [5].
Scheme macros provide syntactic abstraction via compile-time
functions that operator on abstract syntax trees. While the con-
ceptual idea has been transferred to many base languages, the im-
plementation of the Scheme macro system only supports Scheme
as a base language. One of the reasons is that Scheme itself is
used for implementing writing transformations of abstract syntax
trees. In contrast, Sugar∗ employs metalanguages SDF, Stratego,
and Spoofax editor specifications that are independent of the base
language.

A prominent example of the second category is the C prepro-
cessor (CPP) [25]. CPP supports the definition of lexical macros
(#define) and compile-time conditionals (#ifdef). CPP supports
multiple base languages; for example, it has been successfully ap-
plied in C, Java, and Haskell. However, CPP is agnostic to the base
language. CPP operates on a stream of lexical tokens and is com-
pletely oblivious to the syntactic structure of the source code. In
contrast, we require the definition of a parser for the base language
and our transformations operate on abstract syntax trees of the base
language.

Also most existing language workbenches fall into the second
category. A language workbench [13, 16] is a tool that facilitates
the definition of languages. While a language workbench allows
the definition of multiple languages, the language workbench it-
self is agnostic to the actual workings of the defined language. Any
language-specific functionality needs to be defined as part of the
language definition itself, and the language workbench simply exe-
cutes this functionality. In contrast, Sugar∗ has internal compilation
logic that resolves modules of the base language, ensures sound re-
compilation schemes, and extracts and activates base-language ex-
tensions according to extension declarations and extension imports.

Polymorphic embedding [18] of domain-specific languages de-
fines the notion of a language interface, but with a different mean-
ing. In polymorphic embedding, the language interface declares the
operators of the language and is parametric over the semantic do-
main that these operators result in. This allows the implementation
of different semantics for a single language interface. In contrast,
the language interface of Sugar∗ abstracts over the syntax and se-
mantics of different base languages, where each base language is a
separate instantiation of this interface.

Racket [14] allows the implementation of custom programming
languages on top of Racket. Languages are defined as libraries [27].
They can later be used by using the #lang statement at the top of
a source file. In Racket, the internal representation of each pro-
gramming language is identical. The implementation of a language
needs to provide a transformation that takes the source code as an
input and outputs a transformed representation in Racket’s internal
language. Sugar∗ does not have an internal representation of pro-
grams written in a base language. Instead, the Sugar∗ compiler only
interacts with the base language’s module system and compiler via
interfaces IBaseLanguage and IBaseProcessor.

Xbase [6] is a generic expression language for programming
languages written using Xtext. Xbase abstracts over programming
languages by offering a language-independent representation of ex-
pressions. We chose a different abstraction approach for Sugar∗ by
offering a language-independent language-extension mechanism
and compiler.

8. Conclusion
We presented Sugar∗, a framework for syntactic language extensi-
bility. Sugar∗ leverages the module system of the base language
to encapsulate extensions as modules and to activate extensions
via module import statements. To support language extensibility
for many different base languages, we designed an abstract base-
language representation that provides sufficient information for
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tracking module dependency and for activating language exten-
sions. Simultaneously, our abstract base-language representation is
highly versatile and supports base languages with many different
module-system features. To the best of our knowledge, Sugar∗ is
the first system that supports syntactic language extensibility for a
wide range of languages.
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